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Synopsis 

A steady-state and dynamical rheological study was performed with dilute solutions (1-4%) of 
high molecular weight cellulose (M, = 350,000). The solutions are strongly viscoelastic. The 
steady-state viscosity and the first normal stress difference have a power law dependence on the 
shear rate. The  power law indices have the same dependence on temperature and concentration. 
These results as well as the correlation between the steady-state viscosity and the real part of the 
complex viscosity are in good agreement with the Spriggs model. The 4% concentrated solution 
shows the beginning of a rubber-like storage modulus plateau, suggesting the existence of an 
entanglement network. 

INTRODUCTION 

Owing mainly to the lack of suitable solvents, few studies have been 
published on the rheological properties of cellulose Only recently 
have new solvents been discovered making possible the manufacture of cel- 
lulose products. The major solvents are tertiary amine N-oxides, like N-me- 
thylmorpholine N-oxide (MMNO) and N, N-dimethylethanolamine N-oxide 
(DMEAO). These true solvents have been investigated in our laboratories3-' 
and they lead to the processing of fibers and films.l0~" Rheological studies 
have been conducted with low molecular weight cellulose and with cellulose 
having a degree of polymerization 600 in MMN0.l2> l3 At low concentrations, 
the cellulose solutions behave as semirigid polymer solutions and show the 
formation of temporary networks. The highest achievable concentrations are 
mesomorphic, and their rheology presents some noticeable features." All these 
studies were conducted under steady-state conditions. No dynamical data 
have been reported for any cellulose solutions. This paper addresses the 
steady-state and oscillatory investigation of high molecular weight cellulose in 
MMNO and DMEAO. We undertake this investigation in order to gain more 
scientific information on the behavior of this natural polymer, and to relate 
the possible processing of high molecular weight cellulose solutions for obtain- 
ing high modulus fibers.I4 

EXPERIMENTAL 

Materials 

Menoufi cotton cellulose (DP 2000) was dewaxed by alcohol-benzene extrac- 
tion. MMNO from Texaco was purified by recrystallization of the monohy- 
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drate from acetone prior to use, as previously de~cribed.~ DMEAO was 
received as a gift from Dr. R. N. Armstrong, American Enka. The crystallized 
solvent contained 9% w/w of water. The dissolution of cellulose was per- 
fo-med a t  120°C in both solvents. 1% w/w of propylgallate was added as an 
antioxidant for preventing cellulose degradation. Several concentrations were 
prepared between 1 and 4% w/w. They were chosen to provide a good 
spinnability a t  temperatures lower than 130°C, the temperature above which 
a strong degradation occurs. The density of the 1% w/w cellulose in MMNO 
was measured by the floatation method in a CC1,-cyclohexane mixture and 
was found to be 1.20 cmP3. 

RHEOLOGICAL MEASUREMENTS 

Rheological measurements were performed between 75 O C (below which the 
solutions are solid) and 110°C (above which i t  is difficult to monitor the water 
content) with an Instron 3250 rheometer, with two geometries, cone-and-plate 
(cone angle 6") and eccentric rotating disks (ERD). No detectable degradation 
occurred during the course of the experiments, based on viscosity measure- 
ments taken before and after experiments. This held true even when the 
solutions were kept a t  llO°C for about an hour. 

In the present study, only shear rheological measurements were made. 
Steady-state, cone-and-plate, measurements of the torque, and the normal 
force F, give the shear stress u12 and the first normal stress difference 
Nl = ull - aq2 (ai, are the components of the stress tensor). The relation 
between F, and Nl id5 

Nl = (ul1 - u ~ ~ )  = 2FZ/aR2 (1) 

where R is the cone radius. In the case of a laminar flow, the relation between 
the torque and u12 is independent of the flow and of the rotation speed. This 
is not the case for F,, which is a function of the rotation speed due to inertial 
effects. It was shown16 that the inertial contribution F, is: 

F . =  -3  aps2 ' R  4/40 (2) 

with p being the density and s2 the rotation speed in rad. sec-l. The inertial 
contribution is negative and the correction on the measured force F, has to 
be positive. So, F = F, - F, = F, + 31rps2~R~/40. The first normal stress 
difference is: 

The principle of ERD meas~rernents'~ is to subject the sample to sinusoidal 
shearing a t  frequency w by rotating two eccentric discs. For the geometry 
considered in this work, the following relations were used. 
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Fig. 1. Steady-state viscosity q and dynamic viscosity 7' versus shear rate i. or frequency o 
for a 1% DMEAO solution. q'--* 85W; A 105OC; TJ-0 75OC; * 85OC; H 95OC; A 105OC. 

h is the gap and a is the eccentricity. a = 0.3 mm and a/h was set equal to 
unity. We checked that varying a/h from unity to 0.3 does not change the 
values of G' and G". 

G' and G" are the real and imaginary parts of the complex shear modulus. 
G' is the storage modulus and G" is the loss modulus. q' = G"/o and 
q" = G ' / w  are the real and imaginary parts of the complex viscosity. q' is 
called the dynamic viscosity. F, and Fy are the normal (in the plane 
containing the two axes) and tangential (perpendicular to this plane) recorded 
forces. 

RESULTS AND DISCUSSIONS 

The relation between the shear stress a,, and the shear rate p, for a laminar 
flow, as in the case of most polymer solutions, is: 

K is the consistency and n is the power law index. K and n are constant over 
some range of shear rate. Such a power law fluid pertains to the class of 
viscoplastic materials. In this case, the viscosity is defined as q = a12/j.: 

An illustration of this behavior is given in Figure 1 for a 1% solution in 
DMEAO and in Figure 2 for 2.5% solutions in DMEAO and in MMNO. In 
contrast to many polymer solutions, there is no Newtonian plateau. Such a 
result for cellulose solutions in MMNO has been previously seen." Note that 
in this study an extended range of shear rates (lo-' s-l < i. < lo3 s-') was 
employed. It was possible to use very high rotation speeds which are usually 
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Fig. 2. Steady-state viscosity 9 and dynamic 9' versus shear rate i. or frequency w for 2.5% 
DMEAO and MMNO solutions. DMEAO: ?'---. 85OC; A 105OC; 9-0 75OC; A 105OC. 
MMNOq----* 75OC; 0 105OC. 

not attainable due to the centrifugal force tending to eject the material from 
the gap. Exceptionally, all the cellulose solutions studied so far have shown 
this very large stability. The use of these large rotation speeds seems to have 
no influence on the viscosity measurements, as may be seen from the linearity 
of the log q versus log curves up to lo3 s -  '. We are unable to ascribe this 
behavior to  a precise physical property. There is no doubt that adhesion 
forces play a major role. It is anyway a very original and interesting phenome- 
non. 

In Figure 2, at high temperatures, there is a gradual levelling at low shear 
rates due to the onset of the Newtonian plateau. The fact that this occurs 
over more than a decade of shear rate may be due to polydispersity, which in 
our case is unknown. Due to this slow levelling, i t  was impossible to obtain the 
plateau viscosity q,,, the shear stress a t  very low shear rates being much too 
small to be measured. As found for all concentrations and temperatures, and 
illustrated in Figure 2, the viscosity of a solution in MMNO is slightly smaller 
than in DMEAO, holding other parameters constant. This effect is larger a t  
high shear rates. The difference may be explained by a difference in interac- 
tion between the cellulose and the two solvents. MMNO has one hydrophilic 
and one hydrophobic moiety. After solvation of the cellulose molecule by the 
hydrophilic domain, other interaction between cellulose and the solvent is 
improbable. On the contrary, DMEAO has two hydrophilic moieties (N + 0 
and OH). And thus when the N -+ 0 part interacts with the cellulose mole- 
cule, the DMEAO has another moiety remaining which is capable of forming 
one hydrogen bond with another DMEAO molecule or with cellulose. This 
increases the number of intermolecular and interchain bonds in the solution 
and therefore increases the viscosity. 
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Fig. 3. Power law index n versus concentration C.  t DMEAO 75OC; MMNO 75OC; 0 
DMEAO 105OC: 0 MMNO 105OC. 

The power law index n [see Eq. (6)] is plotted in Figure 3. Note that n = 1 
for a Newtonian behavior and n = 0 for a plastic behavior. From Figure 3 one 
can see that the viscosity of MMNO solutions is more sensitive to shear rate 
than that of DMEAO solutions. The smallest number of intermolecular bonds 
in the case of MMNO might favor the formation and deformation of entangle- 
ments, usually thought to be the main reason for a power law behavior. The 
variation of n with concentration and temperature does not allow the plot of 
a master viscosity curve, as all of the known models invoke a constant n. 
Moreover, a key parameter for plotting master curves is q0,I7 which is lacking 
here. Thus, in our case, the steady-state rheology will not be very useful for 
the comparison with theoretical predictions. 

Figure 4 gives the activation energy of viscous flow E, as a function of t. E 
is defined by: 

q = A exp( E/RT) (8) 

where A and R are constants. A similar E versus p curve was found for 
concentrated cellulose 600-MMNO solutions." Equations (7) and (8) give 
E as a function of i, and of a small temperature change A(l/T): 

E / R  = (A(lnK) + Anln+)/A(l/T) (9) 

Since An/A(l/T) and A(ln K )/A(l/T) are independent of y, E/R should be 
a linear function of logy. This is true when Eq. (7) is obeyed, that is for 
logy > 1.5 for the cellulose solutions. The quasiexponential increase of E 
when logy decreases implies that the Newtonian plateau (or the end of the 
levelling) finishes a t  a higher y when the temperature increases. 

Oscillatory measurements were carried out with the ERD geometry. Figure 
5 gives an example of two measurements with a 4% solution in DMEAO. Due 
probably to the rather large cone angle used, instabilities occurred for this 
solution in the cone-and-plate geometry, except a t  very low shear rates. I t  was 
thus possible, for this solution, to have information with the ERD geometry 
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Fig. 4. Activation energy E versus shear rate i. for a 2.5% DMEAO solution. 

where the relative motion of the fluid is much less important. The dynamic 
viscosity q’ shows the same general trend as the steady-state shear viscosity 
q, i.e., a linear part a t  high shear rate or frequency, and a levelling at  low 
shear rate or frequency. The storage modulus G’ will be analyzed in a later 
section. The comparison of 9 with 9’ is usually very useful. Figures 1 and 2 
show the shear dependence of q and q’ a t  a variety of concentrations and 
temperatures. A usual comparison is to check if q: ~ , = q,. Since we did not 

Fig. 5. Dynamic viscosity q‘ and storage modulus G’ versus frequency w for a 4% DMEAO 
solution at 105OC. A q’; A 2G‘. 
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Fig. 6. First normal stress difference N, and storage modulus G’ versus shear rate + or 
frequency w for a 1% DMEAO solution. N,:  W 75OC; A 85OC; 94OC; 0 105OC; 2G’: A 85OC; 0 
105°C. * Nl versus f at 105°C without inertial corrections (-) 2G’/C2 (Cf)  at 
105O C. 

have qo, it is impossible to make this check. We compare q’ = f ( w )  and 
q = f( i ,)  and more precisely see if, by translation along the i, - w axis in a 
log-log plot, they are superposable. This is actually the case for nearly all the 
experiments (all results are not shown in the provided figures). The vixosity- 
shear rate curve is the same as the dynamic viscosity-frequency curv~t when a 
shift factor C is used, given by q( Ci,) = q’( w) .  A shift factor of 0.3 was found. 
This may be viewed as consistent with the theory of Spriggs.18,19 The Spriggs’ 
constitutive equation for viscoelastic fluid is based on the generalized Maxwell 
model, but with a convected derivative given by the author and satisfying 
material objectivity. In this way, the model predicts a non-Newtonian viscos- 
ity and normal stresses under steady simple shear. It also has some other 
predictions as to the above mentioned one concerning q and 9’. The shift 
factor C is related to one of the four constants of this model. The analogy 
between q and q‘ is one of the tests of this model and shows it  may fit our 
results. There are only a few experimental measurements of the value of C. 
They range from 0.5 to l.19920 The value of C = 0.3, being apparently low, is 
difficult to explain in terms of molecular implications. 
As suggested by several theories and often a source of reference, the first 

normal stress difference Nl is equal to twice the storage modulus G’ when 
i, + 0. Nl and 2G‘ are plotted in Figure 6 for the 1% solution in DMEAO. It 
was not possible to measure IV1 a t  low enough shear rates to be able to 
unambiguously evaluate this relation. However, an extrapolation of the re- 
sults suggests that the relationships may hold true. In Figure 6, Nl has a 
power index in the 0.8-1.2 range. This measurement was corrected for the 
inertial contribution of Eq. (2). A comparison of the Nl versus i, plot with and 
without correction is given for T = 105°C in Figure 6. The first normal stress 
difference is, a t  low shear rate, a quadratic function of the shear rate. This is 
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predicted by all of the molecular and continuum theories. This is not the case 
for the studied solutions, where Nl is a power law function of +, with a power 
index in the range 0.8-1.2. The Spriggs’ model predicts a strong connection 
between the behavior of q and N l .  At low shear rate, q = i. and Nl = q2 
while above a certain critical shear rate, q = ?” and Nl = T”. This is obvi- 
ously not the case (see fig. 3) and this is the most serious disagreement we 
found. But, as will be seen in the discussion on the relaxation time, there is a 
strong correlation between the power law indices of q and Nl when the 
concentration or the temperature are changed. G‘ shows a viscous shape for 
the less concentrated solution in Figure 6. For the most concentrated (4%), a 
rubberlike plateau is clearly seen above 10 s-l in Figure 5, expressing the 
influence of entanglements in the solution. 

As for the comparison of q and q’, the Spriggs’ theory predicts a relation 
between the storage modulus G‘ and the first normal stress difference Nl. 
According to this theory, 

A ,  A,  2 are constants or functions of o or i.. Algebraic rearrangement of Eq. 
(10) and (11) gives, if w is replaced by Cp,” 

2 
Nl( ?) = 7 G’( C ? )  

C 

This relation implies that Nl(Y) and 2G’(w) have the same shape in a log-log 
plot. This is not seen in Figure 6. Despite this lack of correlation, the order of 
magnitude of Eq. (12) follows closely, particularly in the range 1 s-l < i. < 100 
s-l using C = 0.3 (Figure 6, where N1(Y) and 2G’/C2(CY) are plotted for 
T = 105°C). It must be noted that the constant C was independently mea- 
sured from q and q’ curves. The departure from Eq. (12) is noticed at  high 
shear rates. The difference in shape between these two curves may be due to 
inertial effects. Contrary to the measurement of normal forces, where an 
analysis of the effect of inertia was performed, there is no such clear analysis 
in the case of ERD measurements. The only work reported thus far on this 
subject concerns only Newtonian fluids.21 

This study was initiated as a contribution to understand the limited 
Young’s modulus E obtained upon spinning cellulose. It seems that despite a 
theoretical Young’s modulus of 250 GPa for cellulose, all the experiments 
performed so far give E = 40 GPa.’4,22 We have become interested in the 
measurement of viscoelastic relaxation times in order to evaluate the reasons 
for having rather low modulus fibers. 

Several relaxation times B were measured. Some are deduced from the 
relaxation of the viscometric functions like the viscosity q, the first normal 
stress difference Nl for the cone and plate geometry, and F, and F y  for the 
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Fig. 7. Relaxation times B versus frequency w or shear rate $ for a 2.5% DMEAO solution at 
a50c. A OF,; OF,; 0 eM; e N ;  * e N , ;  A 07.  

ERD geometry. The related relaxation times are, respectively, d7, O N , ,  B F X ,  
and OFY. Others are part of the constitutive equations. Using a convected 
Maxwell model gives the relaxation time 8 ,  and 8,: 

8 ,  = N1/27jJ2 (13) 

A comparison of these different relaxation times is made in Figure 7. A t  low y 
or w ,  all the Oi give the same order of magnitude, while the differences widen 
when j J  or w increases. In Figure 7, 8, shows a power law behavior, while G’ 
does not. The 2.5% DMEAO solution at  85°C is a special case since 7’ does 
not have a power law behavior, but the ratio of G’ and 7’ shows a power law 
dependance. An interesting feature is presented in Table I where the value of 
the slope of log 8, versus log 9 is presented. Despite the fact that the power 
law index of 7 versus i. and Nl versus i. are strongly dependent on the 
temperature and the concentration (see Fig. 3), the slope of log 8, versus log i. 
is a constant. This means that the factors governing the dependance of Nl and 
77 are the same. This is predicted by the Spriggs’ model,1s”9 but with a 

TABLE I 
Slope of log O N  Versus log i. for DMEAO Solutions 

Concentration 75oc 85O C 95°C 105OC 

1% 
1.6% 
2.5% 

- 0.68 - 0.67 - 0.73 - 0.68 
- 0.70 - 0.70 - 0.69 -0.71 
- 0.66 - 0.60 - 0.69 - 0.69 
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correlation between Nl and 17 which gives a slope of log 8, versus log 3 of - 2, 
instead of - 0.7 (Table I). This trend is nevertheless qualitatively interesting. 

For high modulus fibers, there are two steps, one being the complete 
orientation of the molecules prior to crystallization and the second the 
crystallization itself. Only the first step is considered here. One can have two 
approaches for the calculation of the full extension of the molecules, a spatial 
approach and a time one. The spatial approach relates the draw ratio to the 
dimension of the m o l e ~ u l e . ~ ~ , ~ ~  This analysis is performed for a simple 
molecule and not for dilute solution and its application is difficult. The time 
approach is related to relaxation times. With all the restrictions developed 
above, i t  has been postulated that a tendency for full extension is obtained 
when 

1 
& > -  

be 

0 is the relaxation time, b is a parameter being between 1 and 4 depending on 
the model used25-27 and dr is the stretch rate. We will now use a speculative 
approach to apply Eq. (15). Since we do not have the values of the rheological 
relaxation time of an elongational deformation, we will use the ones de- 
termined in shear. The parameters of the spinning line give the maximum 
stretch rate of the filament, 200 s-’. Using this short cut we took 0 as being 
the shear relaxation time for = ai = 200 s-l, which gives 0 = 0.04 s (Fig 7). 
Taking b = 1 shows that Eq. (15) is satisfied. According to it, the spinning of 
these solutions should give a good extension of the chains. Of course, the 
problem is much more complicated and the influence of the solvent is 
probably the most important parameter. Disorder will occur upon the ex- 
change solvent-nonsolvent in the coagulating bath. 

CONCLUSION 

Not many rheological investigations of cellulose solutions can be found in 
the scientific literature. This is due mainly to the lack of suitable solvents and 
the fundamental knowledge of the dynamics of the most common natural 
polymer is very poor. The present study was performed to gain some informa- 
tion on the viscoelastic behavior of high molecular weight cellulose since 
several organic solvents are now available. One of the two most noticeable 
results of this study is the astonishing ability of the cellulose-MMNO or 
DMEAO solutions to stay in the cone-and-plate gap up to very high rota- 
tional speeds. The reason is unclear to the authors, but since i t  is a general 
behavior for cellulose-organic solvent solutions, and no artifact can be found, 
a more careful study of this phenomenon is planned. The second result is the 
qualitative correlation between the results and the Spriggs’ theory. Since we 
were unable to measure the Newtonian viscosity, a qualitative comparison 
with phenomenological theories is difficult. One way to overcome this problem 
would be to find a way to get good monodisperse fractions. But since the 
problem of measuring molecular weights of cellulose is not completely solved, 
to be able to have fractions is improbable in the near future. This will hamper 
progress in cellulose rheology. 
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